|
Posizione nel menu |
---|
Solve → Equation heat |
Ambiente |
FEM |
Avvio veloce |
Nessuno |
Introdotto nella versione |
- |
Vedere anche |
Tutorial FEM |
Descrizione
Da fare
For info about the math of the equation, see the Elmer models manual, section Heat Equation.
Usage
- Add an
Elmer solver.
- Select it in the Tree view.
- There are several ways to invoke the command:
- Press the
Heat equation button.
- Select the Solve →
Heat equation option from the menu.
- Press the
- Change the equation's solver settings or the general solver settings if necessary.
Solver Settings
For the general solver settings, see the Elmer solver settings.
The heat equation provides these special settings:
- DatiBubbles: There is also a residual-free-bubbles formulation of the stabilized finite-element method. It is more accurate and does not include any ad hoc terms. However, it may be computationally more expensive. If both DatiBubbles and DatiStabilize are false, no stabilization is used and then the results might easily be nonsensical.
Note: If during the first solver iteration you get this error:
ERROR:: IterSolve: Numerical Error: System diverged over maximum tolerance.
The DatiBubbles method failed. In this case set DatiStabilize to true.
Equation:
- DatiConvection: The type of convection to be used in the heat equation.
Note: If this is not set to None, DatiStabilize must be to true otherwise the convection term will not be considered for the heat equation. - DatiPhase Change Model: The model use for phase changes (ice to water etc.). The model Spatial 1 is the apparent-heat-capacity method, Spatial 2 and Temporal are effective-heat-capacity methods.
For more info about the models, see this paper (section 2.5.2.2) (is in German). In the paper it was also shown that Spatial 1 has numerical problems on larger temperature gradients and that Spatial 2 was preferred for the phase change ice to water.
Analysis Feature Information
The heat equation takes the following analysis features into account if they are set:
Note
Except for calculations in 2D, for all the above analysis features it is important that they act on a face or a body. Features in 3D set to lines or vertices are not recognized by the Elmer solver.
Result
The result is the temperature in Kelvin.
Questa pagina è recuperata da https://wiki.freecad.org/FEM_EquationHeat